1. Write a function that returns true if the string parameter is a palindrome. A palindrome is any "word" which is the same forward and backward, eg, "radar", "noon", "20011002", ... The function should return false if the argument is not a palindrome. Assume the prototype is:

bool IsPalindrome (char * s1);
// prototype

Solution 1:

bool IsPalindrome (char * s1)

{

char * s2;

int len;

len = strlen (s1);

s2 = s1;

while (*s2 != '\0') {

s2++;

}

s2--;

for (int i = 0; i < len / 2; i++) {

if (*s2 != *s1) {

return false;

}

s1++;

s2--;

}

return true;

}

2. Write a function which shortens a string s1 to n characters and stores the result in string s2. Assume the prototype is:

void truncate (char *s1, char * s2, int n);
//prototype

Solution 2:

void truncate (char * s1, char * s2, int n)

{

for (int i = 0; i < n; i++) {

*s2 = *s1;

s1++;

s2++;

}

*s2 = '\0';

}

3. Write a program that uses random-number generation to create sentences. The program should use four arrays of pointers to char called article, noun, verb and preposition. The program should create a sentence by selecting a word at random from each array in the following order: article, noun, verb, preposition, article and noun. As each word is picked, it should be concatenated to the previous words in an array that is large enough to hold the entire sentence. The words should be separated by spaces. When the final sentence is output, it should start with a capital letter and end with a period. The program should generate 20 such sentences.

The arrays should be filled as follows:

the article array should contain the articles "the", "a", "one", "some" and "any"; the noun array should contain the nouns "boy", "girl", "dog", "town" and "car"; the verb array should contain the verbs "drove", "jumped", "ran", "walked" and "skipped";

the preposition array should contain the prepositions "to", "from", "over", "under" and "on".

Function toupper that appears in the solution of this problem has the following syntax

int toupper (int c)
You have to include cctype or ctype.h in your file to be able to use it. It converts c to its uppercase equivalent if c is a lowercase letter and has an uppercase equivalent. If no conversion is possible c is unchanged.
Solution 3:
#include <iostream.h>

#include <stdlib.h>

#include <time.h>

#include <string.h>

int main() {

const char *article [] = { "the", "a", "one", "some", "any"},

*noun [] = { "boy", "girl", "dog", "town", "car" },

*verb [] = { "drove", "jumped", "ran", "walked",

 "skipped" },

*preposition [] = {"to", "from", "over", "under", "on"};

const int SIZE = 100;

char sentence [SIZE] = "";

srand (time(0));

// generating 20 sentences

for (int i = 1; i <= 20; ++i) {

strcat (sentence, article [rand() % 5]);

strcat (sentence, " ");

strcat (sentence, noun [rand() % 5]);

strcat (sentence, " ");

strcat (sentence, verb [rand() % 5]);

strcat (sentence, " ");

strcat (sentence, preposition [rand() % 5]);

strcat (sentence, " ");

strcat (sentence, article [rand() % 5]);

strcat (sentence, " ");

strcat (sentence, noun [rand() % 5]);

// The first character to uppercase

sentence [0] = toupper (sentence[0]);

// Outputting the sentence to the screen

cout << sentence << ". \n";

// Re-initialize array to 0 to start with a new sentence

sentence [0] = '\0';

}

return 0;

}
4) Write a program that encodes English language phrases into pig-Latin. Pig-Latin is a form of coded language often used for

amusement. Many variations exist in the methods used to form pig-Latin phrases. For simplicity, use the following algorithm:

To form a pig-Latin phrase from an English-language phrase, tokenize the phrase into words with function strtok. To translate each English word into a pig-Latin word, place the first letter of the English word at the end of the English word, and add the letters “ay.” Thus the word “jump” becomes “umpjay,” the word “the” becomes “hetay” and the word “computer” becomes “omputercay.” Blanks between words remain as blanks. Assume that the: the English phrase consists of words separated by blanks, there are no punctuation marks and all words have two or more letters. Function printLatinWord should display each word. (Hint: Each time a token is found in a call to strtok, pass the token pointer to function printLatinWord, and print the pig Latin word.)

Solution 4
#include <iostream.h>

#include <string.h>

const int SIZE = 80;

void printLatinWord(char *);

int main()

{

char sentence[SIZE], *tokenPtr;

cout << "Enter a sentence:\n";

cin.getline(sentence, SIZE);

cout << "\nThe sentence in Pig Latin is:\n";

tokenPtr = strtok(sentence, " .,;");

while (tokenPtr) {

printLatinWord(tokenPtr);

tokenPtr = strtok(0, " .,;");

if (tokenPtr)
cout << ' ';

}

cout << '.' << endl;

return 0;

}

void printLatinWord(char * wordPtr)

{

int len = strlen(wordPtr);

for (int i = 1; i < len; ++i)

cout << *(wordPtr + i);

cout << *wordPtr << "ay";

}
Sample Output:

Enter a sentence:

mirror mirror on the wall

The sentence in Pig Latin is:

irrormay irrormay noay hetay allway.

